翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Specht modules : ウィキペディア英語版
Specht module
In mathematics, a Specht module is one of the representations of symmetric groups studied by .
They are indexed by partitions, and in characteristic 0 the Specht modules of partitions of ''n'' form a complete set of irreducible representations of the symmetric group on ''n'' points.
==Definition==
Fix a partition λ of ''n''.
A tabloid is an equivalence class of labellings of the Young diagram of shape λ, where two labellings are equivalent if one is obtained from the other by permuting the entries of each row.
Denote by \ the equivalence class of a tableau T.
The symmetric group on ''n'' points acts on the set of tableaux of shape λ (i.e., on the set of labellings of the Young diagram).
Consequently, it acts on tabloids, and on the module ''V'' with the tabloids as basis. For each Young tableau ''T'' of shape λ, form the element
:E_T=\sum_\epsilon(\sigma)\ \in V
where ''Q''''T'' is the subgroup of permutations, preserving (as sets) all columns of ''T'' and \epsilon(\sigma) is the sign of the permutation σ .
The Specht module of the partition λ is the module generated by the elements ''E''''T'' as ''T'' runs through all tableaux of shape λ.
The Specht module has a basis of elements ''E''''T'' for ''T'' a standard Young tableau.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Specht module」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.